Skip to main content
 

 

 

Adaptive Deep Learning Model to Enhance Smart Greenhouse Agriculture

Author name : MEDHAT AHMED TAWFIK ABDELHADY ELAARG
Publication Date : 2023-11-29
Journal Name : Computers, Materials & Continua

Abstract

The trend towards smart greenhouses stems from various factors, including a lack of agricultural land area owing to population concentration and housing construction on agricultural land, as well as water shortages. This study proposes building a full farming adaptation model that depends on current sensor readings and available datasets from different agricultural research centers. The proposed model uses a one-dimensional convolutional neural network (CNN) deep learning model to control the growth of strategic crops, including cucumber, pepper, tomato, and bean. The proposed model uses the Internet of Things (IoT) to collect data on agricultural operations and then uses this data to control and monitor these operations in real time. This helps to ensure that crops are getting the right amount of fertilizer, water, light, and temperature, which can lead to improved yields and a reduced risk of crop failure. Our dataset is based on data collected from expert farmers, the photovoltaic construction process, agricultural engineers, and research centers. The experimental results showed that the precision, recall, F1-measures, and accuracy of the one-dimensional CNN for the tested dataset were approximately 97.3%, 98.2%, 97.25%, and 97.56%, respectively. The new smart greenhouse automation system was also evaluated on four crops with a high turnover rate. The system has been found to be highly effective in terms of crop productivity, temperature management and water conservation.

Keywords

Greenhouse; wireless sensor network; deep learning; Internet of Things; strategic crops monitoring; smart irrigation

Publication Link

https://doi.org/10.32604/cmc.2023.042179

Block_researches_list_suggestions

Suggestions to read

“Synthesis and Characterization study of SnO2/α-Fe2O3, In2O3/α-Fe2O3 and ZnO/α-Fe2O3 thin films and its application as transparent conducting electrode in silicon heterojunction solar cell”
Asma Arfaoui
Influence of zinc acetate on HPMC/CMC polymer blend: Investigation of their composites’ structural, optical, and dielectric properties for dielectric capacitor applications
ghallab ahmed ahmed nassar sobhy
Study of the structural, optical and electrical properties of PVA/SA performance by incorporating Al2O3 nanoparticles
ghallab ahmed ahmed nassar sobhy
Characterization and Cytotoxic Assessment of Bis(2-hydroxy-3-carboxyphenyl)methane and Its Nickel(II) Complex
ghallab ahmed ahmed nassar sobhy
Contact