Skip to main content
 

 

 

Adsorption of Molnupiravir anti-COVID-19 drug over B12N12 and Al12N12 nanocarriers: a DFT study

Author name : TAMER HAMDY ABDELSAMIE HASANIN
Publication Date : 2023-12-29
Journal Name : Journal of Biomolecular Structure and Dynamics

Abstract

The potentiality of B12N12 and Al12N12 nanocarriers to adsorb Molnupiravir anti-COVID-19 drug, for the first time, was herein elucidated using a series of quantum mechanical calculations. Density function theory (DFT) was systematically utilized. Interaction (Eint) and adsorption (Eads) energies showed higher negative values for Molnupiravir···Al12N12 complexes compared with Molnupiravir···B12N12 analogs. Symmetry-adapted perturbation theory (SAPT) results proclaimed that the adsorption process was predominated by electrostatic forces. Notably, the alterations in the distributions of the molecular orbitals ensured that the B12N12 and Al12N12 nanocarriers were efficient candidates for delivering the Molnupiravir drug. From the thermodynamic perspective, the adsorption process of Molnupiravir drug over B12N12 and Al12N12 nanocarriers had spontaneous and exothermic nature. The ESP, QTAIM, NCI …

Keywords

;

Publication Link

https://doi.org/10.1080/07391102.2023.2169763

Block_researches_list_suggestions

Suggestions to read

Photocurrent and electrical properties of SiGe Nanocrystals grown on insulator via Solid-state dewetting of Ge/SOI for Photodetection and Solar cells Applications
MOHAMMED OMAR MOHAMMEDAHMED IBRAHIM
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
EBTSAM KHALEFAH H ALENEZY
Efficient framework for energy management of microgrid installed in Aljouf region considering renewable energy and electric vehicles
Ali fathy mohmmed ahmed
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
AHMED HAMAD FARHAN ALANAZI
Contact