Skip to main content

Non-destructive inspection system for special nuclear material using inertial electrostatic confinement fusion neutrons and Laser Compton Scattering Gamma-rays

Author name : HANI HUSSEIN ABDU HUSSEIN NEGM
Publication Date : 2012-08-13
Journal Name : 2012 IEEE Conference on Technologies for Homeland Security (HST)

Abstract

A study of a non-destructive inspection system for hidden special nuclear materials in the cargo container at the sea port has been carried out under a promotion of Japan Science and Technology. This inspection system consists of an active neutron detection method for a fast screening purpose and a nuclear resonance fluorescence (NRF) method for isotope identification. The inertial electrostatic confinement fusion device has been developed for a neutron source and two neutron detection methods, the Feynman-alpha method and high energy neutron detection method, have been examined to realize the fast screening system. Generation of a quasi-monochromatic gamma-ray beam from the laser Compton Backscattering by using a compact microtron electron accelerator and an NRF experiment on uranium target using a new type of scintillation detector, LaBr3(Ce), has been studied to realize the isotope …

Keywords

Non-destructive inspection system for special nuclear material using inertial electrostatic confinement fusion neutrons and Laser Compton Scattering Gamma-rays

Publication Link

https://ieeexplore.ieee.org/abstract/document/6459928

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact