Skip to main content

Synthesis and Characterization of a New Neodymium Complex: DFT Insights and Potential Anticancer Applications

Author name : BASMA ALI ALI ALI BALBOUL
Publication Date : 2025-02-18
Journal Name : Applied organometallic Chemistry

Abstract

A new complex of type [Nd (HL) (NO3)2] has been synthesized with a Schiff base ligand H2L derived from 2-hydroxy-3-methoxybenzaldehyde and L-histidine. The structure of the synthesized complex was established using elemental analysis, molar conductivities, FT-IR, 1HNMR, SEM, and x-ray diffraction (XRD) spectroscopy. FT-IR data revealed that H2L acts as a tetradentate ligand through the carboxylic acid, azomethine nitrogen, methoxy oxygen, and hydroxyl groups. Based on the electronic spectra, an octahedral configuration was hypothesized for the complex. The TGA method was employed to study the thermal behavior of ligand and its complex, and thermodynamic parameters were determined using Coats–Redfern equations. The XRD analysis revealed that the synthesized compounds possess nanoscale dimensions, with their crystallinity significantly enhanced by the coordination of the Nd(III) ion with H2L. DFT calculations were performed to optimize the geometry of the proposed structures, indicating improved thermodynamic and electronic stabilities. The reduced HOMO–LUMO gap in the Nd(III) complex further highlights its remarkable conductive and electronic properties. The surface morphology of the Nd(III) complex was analyzed using SEM to investigate its structural characteristics. The SEM images reveal a variety of particle shapes, including elongated, prismatic, and irregular blocky particles with sharp edges, suggesting a crystalline nature. The ligand and its Nd(III) complex were evaluated for their anticancer activity against prostate carcinoma, breast carcinoma, and lung carcinoma cell lines. The inhibition rate of Nd(III) complex was 92.81%, 93.25%, and 94.58%, respectively. The results demonstrated that the Nd(III) complex exhibited significantly enhanced anticancer activity compared to the ligand alone, likely due to its improved structural and electronic properties. These findings suggest that the Nd(III) complex holds promise as a potent anticancer agent.

Keywords

Schiff base, Neodymium complex, DFT, Quantum chemical calculations, Anticancer activity.

Publication Link

https://doi.org/10.1002/aoc.70067

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact