Skip to main content

Neural network-based adaptive fault-tolerant control for strict-feedback nonlinear systems with input dead zone and saturation

Author name : Mohamed Kharrat
Publication Date : 2024-12-17
Journal Name : Journal of the Franklin Institute

Abstract

This study investigates the issue of adaptive fault-tolerant neural control in strict-feedback nonlinear systems. The system is subjected to actuator faults, dead-zone and saturation. To model the unknown functions, radial basis function neural networks (RBFNN) are employed. The proposed approach utilizes a backstepping technique to formulate an adaptive fault-tolerant controller, drawing upon the Lyapunov stability theory and the approximation capabilities of RBFNN. The resultant controller guarantees the boundedness of all signals in the closed-loop system, ensuring precise tracking of the reference signal by the system output with a small, bounded error. Finally, simulation results are provided to illustrate the efficacy of the proposed strategy in addressing actuator faults, dead-zone, and saturation.

Keywords

Actuator fault · Dead-zone · Multi dimensional Nonlinear system · Taylor network · Unmodeled dynamics

Publication Link

https://doi.org/10.1016/j.jfranklin.2024.107471

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact