Skip to main content

Heavy liquids for rapid separation of cathode and anode active materials from recycled lithium-ion batteries

Author name : HAMMAD MULAYH TARJAM ALSHAMMARI
Publication Date : 2021-11-01
Journal Name : Elsevier

Abstract

Lithium-ion batteries (LIBs) dominate the industry of rechargeable batteries in recent years due to their advantages, including high energy and power density and relatively long lifespan. Despite these advantages, the disposal of spent LIBs into the ground is harmful to the environment, which needs to be addressed by recycling spent LIBs. The available recycling methods for spent LIBs such as pyrometallurgy and hydrometallurgy focus only on collecting valuable elements from the spent LIBs. The direct physical recycling method may be more economical than the other two methods if the mixed cathode and anode active materials are separated, directly regenerated, and then used to make new LIBs. The first obstacle in this method is the separation of different types of spent active materials that came in the form of micro-sized powder (filter cake). This study aims to separate the mixture of cathode and anode active materials by adopting Stokes' law. The focus is on the physical separation rather than the thermal or chemical separation methods to avoid damaging the morphology and composition of electrode active materials. The proposed mathematical model shows how fast and effectively different electrode materials can be separated by adjusting the heavy liquid density. For validation, several experiments are conducted to separate the cathode active materials (LiCoO2, LiFePO4, LiNi0.8Co0.15Al0.05O2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4) and the anode active material (Graphite) from each other. Overall, this study shows how rapidly and effectively (high purity) electrode active materials can be separated without damaging the morphology and the composition of electrode active materials.

Keywords

Lithium-ion batteryRecyclingElectrode materialsRapid separationHeavy liquids

Publication Link

https://doi.org/10.1016/j.resconrec.2021.105749

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact