Skip to main content

Conformable Double Laplace-Sumudu Iterative Method

Author name : Shams Eldeen Ahmed Abdelmajed Mohammed
Publication Date : 2022-11-14
Journal Name : Symmetry

Abstract

This research introduces a novel approach that combines the conformable double Laplace–Sumudu transform (CDLST) and the iterative method to handle nonlinear partial problems considering some given conditions, and we call this new approach the conformable Laplace–Sumudu iterative (CDLSI) method. Furthermore, we state and discuss the main properties and the basic results related to the proposed technique. The new method provides approximate series solutions that converge to a closed form of the exact solution. The advantage of using this method is that it produces analytical series solutions for the target equations without requiring discretization, transformation, or restricted assumptions. Moreover, we present some numerical applications to defend our results. The results demonstrate the strength and efficiency of the presented method in solving various problems in the fields of physics and engineering in symmetry with other methods.

Keywords

conformable single Laplace transform; conformable single Sumudu transform; conformable double Laplace–Sumudu transform; iterative method; conformable partial derivative; nonlinear fractional partial differential equations

Publication Link

https://doi.org/10.3390/sym15010078

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact