Skip to main content

Exogenous Nitric Oxide Mitigates Nickel-Induced Oxidative Damage in Eggplant by Upregulating Antioxidants, Osmolyte Metabolism, and Glyoxalase Systems

Author name : HAIFA ABDULAZIZ SAKET ALHAITHLOUL
Publication Date : 2019-12-01
Journal Name : Plants 2019, 8,(12) 562; 1-17 2019

Abstract

Nitric oxide (NO) at optimal levels is considered beneficial to plant functioning. The present study was carried out to investigate the role of exogenously applied NO (100 and 150 µM sodium nitropurusside, SNP) in amelioration of nickel (Ni)-mediated oxidative effects in eggplant. Ni stress declined growth and biomass production, relative water content (RWC), and chlorophyll pigment synthesis, thereby affecting the photosynthetic efficiency. Exogenously applied SNP proved beneficial in mitigating the Ni-mediated growth restrictions. NO-treated seedlings exhibited improved photosynthesis, stomatal conductance, and chlorophyll content with the effect of being apparent at lower concentration (100 µM SNP). SNP upregulated the antioxidant system mitigating the oxidative damage on membranes due to Ni stress. The activity of superoxide dismutase, catalase, glutathione S-transferase, ascorbate peroxidase, and glutathione reductase was upregulated due to SNP which also increased the ascorbate and reduced glutathione content. SNP-supplied seedlings also showed higher proline and glycine betaine accumulation, thereby improving RWC and antioxidant system. Glyoxalase I activity was induced due to SNP application declining the accumulation of methylglyoxal. NO-mediated mitigation of Ni toxicity was confirmed using NO scavenger (PTIO, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), which reversed the influence of SNP almost entirely on the parameters studied. Uptake of nitrogen (N), potassium (K), and calcium (Ca) was increased due to SNP application and Ni was reduced significantly. Therefore, this study revealed the efficiency of exogenous SNP in enhancing Ni stress tolerance through upregulating antioxidant and glyoxalase systems.

Keywords

Antioxidants; Glyoxalase; Lipid peroxidation; Lipoxygenase; Nickel; Nitric oxide

Publication Link

https://doi.org/10.3390/plants8120562

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact