Skip to main content

Formulation of Lipid-Based Nanocarriers of Lacidipine for Improvement of Oral Delivery: Box-Behnken Design Optimization, In Vitro, Ex Vivo, and Preclinical Assessment

Author name : Ameeduzzafar Sarwar
Publication Date : 2022-06-05
Journal Name : ASSAY and Drug Development Technologies

Abstract

The present research work was aimed to develop and optimize the nanostructured lipid carrier (NLCs) of the antihypertensive drug lacidipine (LAC) for the improvement of oral bioavailability and antihypertensive activity. LAC-NLCs were successfully developed by the preemulsion probe sonication technique. The formulations were optimized by Box-Behnken design and assessed for particle size (PS), polydispersity index (PDI), entrapment efficiency (EE), drug loading (DL), drug release, ex vivo permeation, and in vivo study. The optimized LAC-NLCs showed nanometric PS (191.0 ± 5.89 nm), high EE (90% ± 3.69%) and DL (9.26% ± 1.89%), negative zeta potential (-28.9 ± 0.99 mV), and narrow size distribution (PDI of 0.074 ± 0.013) with spherical morphology. The drug release study revealed that a significantly (p < 0.05) higher LAC release (88.49% ± 3.01%) was achieved from the optimized LAC-NLCs compared to LAC-dispersion (34.27% ± 3.01%). Moreover, the optimized LAC-NLCs showed significantly (p < 0.05) higher intestinal permeation (692.04 ± 19.76 μg) than LAC-dispersion (23.83 ± 5.08 μg). After oral administration of a single dose of LAC, the optimized LAC-NLCs exhibited 3.45-fold higher relative oral bioavailability as well as a more prominent antihypertensive effect than LAC-dispersion. This might be due to the high penetration and absorption of the drug. Hence, NLCs might provide an efficient nano delivery for the management of hypertension and promising drug delivery systems for the bioavailability enhancement of LAC.

Keywords

Lacidipine, Lipid-Based Nanocarriers

Publication Link

https://doi.org/10.1089/adt.2021.0

Block_researches_list_suggestions

Suggestions to read

Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact