Skip to main content

Formulation of intranasal surface engineered nanostructured lipid carriers of rotigotine: Full factorial design optimization, in vitro characterization, and pharmacokinetic evaluation

Author name : Ameeduzzafar Sarwar
Publication Date : 2022-11-05
Journal Name : International Journal of Pharmaceutics

Abstract

The objective of the present research was to develop, optimize, and evaluate rotigotine (RT)-loaded chitosan (CH) coated nanostructured lipid carriers (RT-CH-NLCs) for nose-to-brain delivery. The NLCs were prepared by homogenization and sonication technique as well as optimized by using three factors at three-level Box-Behnken design. The prepared NLCs were evaluated for particle size, zeta potential, entrapment efficiency, drug release, and ex vivo permeation. The pharmacokinetic study was conducted on albino Wistar rats to evaluate the bioavailability and neuropharmacokinetic parameters after intranasal administration of the optimized formulation (RT-CH-NLCs-OPT). The optimized formulation showed the particle size (170.48 ± 8.37 nm), PDI (0.19 ± 0.03), zeta potential (+26.73 mV), and entrapment efficiency (82.37 ± 2.48 %). In vitro drug release study displayed a sustained drug release pattern from RT-CH-NLCs-OPT (86.73 ± 8.58 % in 24 h) in comparison to RT-Dis (98.61 ± 7.24 % in 16 h). The permeability coefficient (PC) was found to be 11.39 ± 1.08 × 10-4 cm.h-1 and 2.34 folds higher than RT-Dis (4.85 ± 1.53 × 10-4 cm.h-1). The relative bioavailability of RT from RT-CH-NLCs-OPT was 3.2-fold greater as compared to RT-Dis. The absolute bioavailability of RT after intranasal administration of RT-CH-NLCs-OPT was 2.1-fold higher than RT-CH-NLCs-OPT administered intravenously. The brain targeting and targeting potential was displayed by DTE (422.03 %) and DTP (76.03 %) after intranasal administration of RT-CH-NLCs-OPT as compared to RT-Dis (DTE 173.91 % and DTP 59.97 %). Furthermore, confocal laser scanning microscopy results confirmed better brain targeting for RT-CH-NLCs-OPT as compared to RT-Dis. From these findings, it could be concluded that RT-CH-NLCs could serve as a promising strategy for targeting RT through the intranasal route.

Keywords

Experimental design; Intranasal delivery; NLCs; Neuro-pharmacokinetic; Parkinsonism disease; Rotigotine

Publication Link

https://doi.org/10.1016/j.ijpharm.2022.122232

Block_researches_list_suggestions

Suggestions to read

Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact