Skip to main content

HYDROGENIC IMPURITY IN A QUANTUM WIRE: EFFECT OF DIFFERENT MASSES OF WIRE AND BARRIER

Author name : elsayed aly bastawisy sawsan
Publication Date : 2009-03-30
Journal Name : International Journal of Modern Physics B

Abstract

A variational calculation is given within the effective mass approximation of the binding energy of a hydrogenic donor impurity located on the axis of an infinitely long circular quantum well wire. A uniform magnetic field is applied along the axis of the wire. The different effective masses of the wire and the barrier are taken into consideration. This has not been done hitherto in the presence of the magnetic field. New analytical expressions for the electron energy levels and the binding energies of the hydrogenic impurity in the ground and the first four excited states have been derived.
Moreover, the form of the binding energy reported in earlier works in the special case of zero magnetic field has been amended. A new form of the trial wavefunction has also been introduced. It has the advantage of satisfying the required boundary conditions in the case of different masses of the wire and barrier, and thus it resembles

Keywords

Quantum wire hydrogenic impurity variational method binding energy magnetic field

Publication Link

https://doi.org/10.1142/S0217979209049346

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact