Skip to main content

A novel integrated approach of RUNge Kutta optimizer and ANN for estimating compressive strength of self-compacting concrete

Author name : elsayed aly bastawisy sawsan
Publication Date : 2023-01-07
Journal Name : Case Studies in Construction Materials

Abstract

In this study machine learning models are used that forecast the compressive strength of self-compacting concrete (SCC) depending on percentage replacement of cement by supplementary cementitious material. In order to predict the mechanical property of SCC, a hybrid artificial neural network (ANN) along with metaheuristic optimization techniques and two traditional models were employed which comprised of 300 datasets. Several input factors are employed in the modelling process, including cement, the water-binder ratio, coarse aggregate, fine aggregate, fly ash (FA) and the superplasticizer. ANN hybridised with RUNge Kutta optimizer (RUN) was chosen as one of the top predictive models based on coefficient of determination ((R2 = 0.933 (in training) and R2 = 0.9203 (in testing))) findings and model validation. According to the rank analysis, the ANN-RUN surpassed other models with a score of 128

Keywords

Compressive strengthSelf-compacting concreteMetaheuristic optimizationRUNge Kutta optimizer

Publication Link

https://doi.org/10.1016/j.cscm.2023.e02163

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact