Skip to main content

Deep Learning-Driven Single-Lead ECG Classification: A Rapid Approach for Comprehensive Cardiac Diagnostics

Author name : MOHAMED MOHAMED EZZELDIN ISMAIL
Publication Date : 2025-02-06
Journal Name : Diagnostics

Abstract

Background/Objectives: This study aims to address the critical need for accessible, early, and accurate cardiac di-agnostics, especially in resource-limited or remote settings. By shifting focus from traditional multi-lead ECG analysis to single-lead ECG data, this research explores the potential of advanced deep learning models for classifying cardiac conditions, including Nor-mal, Abnormal, Previous Myocardial Infarction (PMI), and Myocardial Infarction (MI). Methods: Five state-of-the-art deep learning architectures—Inception, DenseNet201, MobileNetV2, NASNetLarge, and VGG16—were systematically evaluated on individual ECG leads. Key performance metrics, such as model accuracy, inference time, and size, were analyzed to determine the optimal configurations for practical applications. Results: VGG16 emerged as the most accurate model, achieving an F1-score of 98.11% on lead V4 with a prediction time of 4.2 ms and a size of 528 MB, making it suitable for high-precision clinical settings. MobileNetV2, with a compact size of 13.4 MB, offered a balanced performance, achieving a 97.24% F1-score with a faster inference time of 3.2 ms, positioning it as an ideal candidate for real-time monitoring and telehealth applications. Conclusions: This study bridges a critical gap in cardiac diagnostics by demonstrating the feasibility of lightweight, scalable, single-lead ECG analysis using advanced deep learning models. The findings pave the way for deploying portable diagnostic tools across diverse settings, enhancing the accessibility and efficiency of cardiac care globally.

Keywords

cardiovascular diseases (CVDs); single-lead ECG; deep learning models; cardiac condition classification; VGG16; telemedicine applications

Publication Link

https://doi.org/10.3390/diagnostics15030384

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact