Hybrid Beads of Poly(Acrylonitrile-co-Styrene/Pyrrole)@Poly Vinyl Pyrrolidone for Removing Carcinogenic Methylene Blue Dye Water Pollutant
Abstract
Organic azo dyes such as Methylene Blue (MB) pollute water and are considered a global threat to the health and environ- ment. Accordingly, the present study aims to fabricate cost-effective, eco-friendly, and highly performing hybrid beads of Poly (Acrylonitrile-co-Styrene/Pyrrole)@Poly Vinyl Pyrrolidone (Poly (AN-co-ST/Py)@PVP) for Methylene Blue dye adsorption via the phase inversion technique. The fabricated hybrid beads were physico-chemically characterized by scan- ning electron microscopy (SEM), thermogravimetric analysis (TGA), fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), and atomic force microscopy (AFM). The required experimental adsorption conditions were optimized: contact time, dye solution pH, beads dosage, and MB initial concentration. Langmuir isotherm and pseudo-second order kinetic models described the MB adsorption equilibrium and kinetics well. Only 0.8 g of the fabricated hybrid beads were needed to achieve a maximum of 90% dye removal after 180 min of equilibrium time. For screening, twenty-five runs were applied, and thirteen runs were optimized using the Plackett–Burman Design (PBD) model. Time is the most effective factor in PBD, with an efficiency rate of 88.42%, according to the optimization stage of the process after initial screening revealed that time, dosage, and dye concentration were the most important variables. The fabricated hybrid beads reveal a great ability to adsorb MB molecules effectively from wastewater samples.