Skip to main content

The rejection of mono- and di-valent ions from aquatic environment by MWNT/chitosan buckypaper composite membranes: Influences of chitosan concentrations

Author name : Ibrahim hotan zaidi alsohaimi
Publication Date : 2019-09-14
Journal Name : Separation and Purification Technology

Abstract

Owing to the scarcity of proper drinking water is an urgent problem, MWNT/Chitosan membrane is greeting to reject mono- and di-valent ions from water. MWNT/Chitosan membrane was fabricated through the dispersion of Multi-walled carbon nanotubes (MWNTs) in an aqueous solution containing different concentrations of chitosan. The influence of solution concentration on membrane salt rejection properties, as well as contact angle, electrical conductivity, water permeability, mechanical properties, zeta potential, surface area and internal pores morphologies has been investigated. The resulting buckypaper demonstrate that the contact angle (91° ± 4° to 124° ± 3°), electrical conductivity (17 ± 1 to 83 ± 3 S/cm), water permeability (0.59 ± 0.04 to 5.73 ± 0.3 L/m2 h bar), surface area and internal pores morphologies of the buckypaper membranes were de- creased by increasing the concentration of chitosan. While, the mechanical properties (tensile strengths varied between 35 ± 2 and 75 ± 3 MPa) and zeta potential of these buckypaper membranes were found to increase with increasing the amounts of chitosan. A buckypaper fabricated from MWNTs and a high concentration of chitosan (0.4% w/v) showed a higher rejection efficiency for these salts, possibly due to their smaller internal pore volumes and lower specific surface area.

Keywords

Carbon nanotube, Composite, Membrane, Buckypapers, Biopolymer, Desalination

Publication Link

https://doi.org/10.1016/j.seppur.2019.116088

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
“Synthesis and Characterization study of SnO2/α-Fe2O3, In2O3/α-Fe2O3 and ZnO/α-Fe2O3 thin films and its application as transparent conducting electrode in silicon heterojunction solar cell”
Asma Arfaoui
Frequency and voltage dependent of electrical and dielectric properties of 14 nm Fully Depleted Silicon-On-Insulator (FD-SOI)
MOHAMMED OMAR MOHAMMEDAHMED IBRAHIM
Biosynthesis of Zn-nano complex using Olive seeds for Antimicrobial Regulation of Nanostructured Materials
MERVAT RAGAB ATTA MOHAMED
Contact