Skip to main content

Cardiac Arrhythmia Disease Classifier Model Based on a Fuzzy Fusion Approach

Author name : ABDELAZIZ IBRAHIM ABDELKHALEK SHEHAB
Publication Date : 2023-10-30
Journal Name : Computers Materials & Continua

Abstract

Cardiac diseases are one of the greatest global health challenges. Due to the high annual mortality rates, cardiac diseases have attracted the attention of numerous researchers in recent years. This article proposes a hybrid fuzzy fusion classification model for cardiac arrhythmia diseases. The fusion model is utilized to optimally select the highest-ranked features generated by a variety of well-known feature-selection algorithms. An ensemble of classifiers is then applied to the fusion’s results. The proposed model classifies the arrhythmia dataset from the University of California, Irvine into normal/abnormal classes as well as 16 classes of arrhythmia. Initially, at the preprocessing steps, for the miss-valued attributes, we used the average value in the linear attributes group by the same class and the most frequent value for nominal attributes. However, in order to ensure the model optimality, we eliminated all attributes which have zero or constant values that might bias the results of utilized classifiers. The preprocessing step led to 161 out of 279 attributes (features). Thereafter, a fuzzy-based feature-selection fusion method is applied to fuse high-ranked features obtained from different heuristic feature-selection algorithms. In short, our study comprises three main blocks: (1) sensing data and preprocessing; (2) feature queuing, selection, and extraction; and (3) the predictive model. Our proposed method improves classification performance in terms of accuracy, F1 measure, recall, and precision when compared to state-of-the-art techniques. It achieves 98.5% accuracy for binary class mode and 98.9% a​c​c​u​r​a​c​y​.

Keywords

Cardiac Arrhythmia

Publication Link

https://www.techscience.com/cmc/v75n2/52076

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact