Skip to main content

Unsupervised Model for Detecting Plagiarism in Internet-based Handwritten Arabic Documents

Author name : ABDELAZIZ IBRAHIM ABDELKHALEK SHEHAB
Publication Date : 2020-03-03
Journal Name : Journal of Organizational and End User Computing

Abstract

Due to the rapid increase of internet-based data, there is urgent need for a robust intelligent documents security mechanism. Although there are many attempts to build a plagiarism detection system in natural language documents, the unlimited variation and different writing styles of each character in Arabic documents make building such systems challenging. Based on its position in a word, the same Arabic letter can be written three different ways, which makes the handwritten character recognition a cumbersome process. This article proposes an intelligent unsupervised model to detect plagiarism in these documents called ASTAP. First, a handwritten Arabic character recognition system is proposed using the Grey Wolf Optimization (GWO) algorithm. Then, a modified Abstract Syntax Tree (AST) is used to match the contents of the Arabic documents to detect any similarity. Compared to the state-of-the-art methods, ASTAP improves the effectiveness of the plagiarism detection in terms of the matched similarity ratio, the precision ratio, and the processing time.

Keywords

Grey Wolf Optimization (GWO) algorithm, Syntax Tree

Publication Link

https://www.igi-global.com/gateway/article/245998

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact