Skip to main content

Optimal Deep Learning Model for Olive Disease Diagnosis Based on an Adaptive Genetic Algorithm

Author name : MAHMOOD ABDELMONEIM MAHMOOD MOHAMED
Publication Date : 2022-02-24
Journal Name : Wireless Communications and Mobile Computing, Hindawi

Abstract

Though many researchers have studied plant leaf disease, the timely diagnosis of diseases in olive leaves still presents an indisputable challenge. Infected leaves may display different symptoms from one plant to another, or even within the same plant. For this reason, many researchers studied the effects of those diseases on, at most, two plants. Since olive crops are affected by many pathogens, including bacteria welt, olive knot, Aculus olearius, and olive peacock spot, the development of an efficient algorithm to detect the diseases was challenging because the diseases could be defined in many different ways. For this purpose, we introduce an optimal deep learning model for diagnosing olive leaf diseases. This approach is based on an adaptive genetic algorithm for selecting optimal parameters in deep learning model to provide rapid diagnosis. To evaluate our approach, we applied it in three famous deep learning models. For the comparative evaluation, we also tested other well-known machine learning methods. The experimental results presented in this paper show that our model outperformed the other algorithms, achieving an accuracy of approximately 96% for multiclass classification and 98% for binary classification.

Keywords

Optimal Deep Learning, Olive Disease Diagnosis , Genetic Algorithm

Publication Link

https://doi.org/10.1155/2022/8531213

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
“Synthesis and Characterization study of SnO2/α-Fe2O3, In2O3/α-Fe2O3 and ZnO/α-Fe2O3 thin films and its application as transparent conducting electrode in silicon heterojunction solar cell”
Asma Arfaoui
Frequency and voltage dependent of electrical and dielectric properties of 14 nm Fully Depleted Silicon-On-Insulator (FD-SOI)
MOHAMMED OMAR MOHAMMEDAHMED IBRAHIM
Biosynthesis of Zn-nano complex using Olive seeds for Antimicrobial Regulation of Nanostructured Materials
MERVAT RAGAB ATTA MOHAMED
Contact