Skip to main content

Growth of high-quality GaN nanowires on p-Si (1 1 1) and their performance in solid state heterojunction solar cells

Author name : Kamal Eldin Mohamed Abdalla Abdelrahman
Publication Date : 2021-09-18
Journal Name : solar energy

Abstract

We report on the optimized growth of catalyst-free GaN nanowires (NWs)/p-Si by the vapor–solid (V-S) method using chemical vapor deposition (CVD). The effect of NH3 gas flow rate on the morphology and photovoltaic behavior of the material has been investigated. The length and the diameter of the NWs decrease as the NH3 flow rate increases. Raman and X-ray diffraction (XRD) analyses reveal lower internal stress in the prepared NWs. The photoluminescence (PL) spectra indicate strong near band-edge (NBE) peaks extending from 365 to 368 nm and their intensity varied significantly with the NH3 flow rate. The assembled n-GaN NWs/p-Si solar cell devices reveal a maximum conversion efficiency of ∼7.87% under AM 1.5G illumination. This study shows that the morphology, optical, and performance of the fabricated n-GaN NWs on p-Si are strongly affected by the gas flow rate.

Keywords

GaN NWs, p-Si solar cell devices

Publication Link

https://doi.org/10.1016/j.solener.2021.09.045

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact