Skip to main content

High-Isolation Array Antenna Design for 5G mm-Wave MIMO Applications

Author name : Nasr Mahmoud Mohamed Rashid
Publication Date : 2025-01-04
Journal Name : Journal of Infrared, Millimeter, and Terahertz Waves

Abstract

A low form-factor design of an eight-element antenna array is presented for 5G mm-wave MIMO applications. The design features modified circular patch radiators that achieve an impedance bandwidth of 2.6 GHz, covering frequencies from 37.7 to 40.3 GHz. The radiating elements are strategically arranged on opposite sides of a common substrate and interleaved to significantly reduce mutual coupling between adjacent elements. This innovative technique effectively minimizes coupling between the array’s radiators without the need of a decoupling structure. The MIMO antenna is fabricated on a low-loss Rogers-5880 substrate, with a thickness of 0.8 mm, a dielectric constant of 2.2, and a loss tangent of 0.0009, ensuring minimal signal loss and confirming the accuracy of simulation results. The inter-element isolation exceeds 25 dB, and the array provides a gain greater than 6 dBi, with a peak gain of 7.5 dBi at 39 GHz. This high gain enhances the antenna’s ability to mitigate atmospheric attenuation at higher frequencies, making it highly suitable for 5G mm-wave applications.

Keywords

Millimeter wave (mmWave) · Antenna array · MIMO antennas · High isolation · 5G communications

Publication Link

https://doi.org/10.1007/s10762-024-01027-3

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact