Skip to main content

Enhancing Non-Small Cell Lung Cancer Survival Prediction through Multi-Omics Integration Using Graph Attention Network

Author name : Murtada Khalafallah Elbashir
Publication Date : 2024-10-21
Journal Name : Diagnostics

Abstract

Background: Cancer survival prediction is vital in improving patients’ prospects and recommending therapies. Understanding the molecular behavior of cancer can be enhanced through the integration of multi-omics data, including mRNA, miRNA, and DNA methylation data. In light of these multi-omics data, we proposed a graph attention network (GAT) model in this study to predict the survival of non-small cell lung cancer (NSCLC). Methods: The different omics data were obtained from The Cancer Genome Atlas (TCGA) and preprocessed and combined into a single dataset using the sample ID. We used the chi-square test to select the most significant features to be used in our model. We used the synthetic minority oversampling technique (SMOTE) to balance the dataset and the concordance index (C-index) to measure the performance of our model on different combinations of omics data. Results: Our model demonstrated superior performance, with the highest value of the C-index obtained when we used both mRNA and miRNA data. This demonstrates that the multi-omics approach could be effective in predicting survival. Further pathway analysis conducted with KEGG showed that our GAT model provided high weights to the features that are associated with the viral entry pathways, such as the Epstein–Barr virus and Influenza A pathways, which are involved in lung cancer development. From our findings, it can be observed that the proposed GAT model leads to a significantly improved prediction of survival by exploiting the strengths of multiple omics datasets and the findings from the enriched pathways. Our GAT model outperforms other state-of-the-art methods that are used for NSCLC prediction. Conclusions: In this study, we developed a new model for the survival prediction of NSCLC using the GAT based on multi-omics data. Our model showed outstanding predictive values, and the KEGG analysis of the selected significant features showed that they were implicated in pivotal biological processes underlying pathways such as Influenza A and the Epstein–Barr virus infection, which are linked to lung cancer progression.

Keywords

mRNA; miRNA; DNA methylation; multi-omics data; graph attention network

Publication Link

https://doi.org/10.3390/diagnostics14192178

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact