Skip to main content

Modified Deep Residual Quantum Computing Optimization Technique for IoT Platform

Author name : AHMED ATITO ABDELATY ELHADAD
Publication Date : 2021-12-09
Journal Name : International Journal of Advanced Computer Science and Applications

Abstract

Internet of Things (IoT) is defined as millions of interconnections between wireless devices to obtain data globally. The multiple data are targeting to observe the data through a common platform, and then it becomes essential to investigate accuracy for realizing the best IoT platform. To address the growing demand for time-sensitive data analysis and real-time decision-making, accuracy in IoT data collecting has become critical. The Res-HQCNN is a hybrid quantum-classical neural network with deep residual learning. The model is qualified in an end-to-end analog method in a traditional neural network, backpropagation is used. To discover the Res-HQCNN efficiency to perform on the classical computer, there has been a lot of investigation into quantum data with or without noise. Then focus on the application of the artificial neural network to analyze the dangers to these IoT networks. For data recording purposes, to undertake in-depth analysis on the threat severity, kind, and source, a model is trained using recurrent and convolutional neural networks. The intrusion detection system (IDS) explored in this study has a success rate of 99% based on the empirical data supplied to the model. Due to irregularly distributed robust execution, larger affectability for the introduction of authority dimension, steadiness, and the extremely large crucial area, a quantum hash function work has been proposed as an amazing method for secure communication between the IoT and cloud.

Keywords

Internet of things (IoT); cloud; Res-HQCNN; intrusion detection system (IDS); optimization

Publication Link

https://dx.doi.org/10.14569/IJACSA.2021.0121244

Block_researches_list_suggestions

Suggestions to read

Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact