Skip to main content

Shear strength and particle breakage of construction and demolition waste as a function of moisture state and compaction level: Insights for sustainable highway engineering

Author name : FAYEZ KHALAF RAHIL ALANAZI
Publication Date : 2024-04-02
Journal Name : PLOS One

Abstract

In this study, the variation of shear strength behavior and particle breakage (after shearing), as a function of moisture state and compaction level, is investigated for recycled concrete aggregate blended with recycled clay masonry. Recycled masonry was blended with concrete aggregate in percentages ranging from 0% to 30% by total weight. Tests include; basic engineering characteristics (particle size, modified compaction, hydraulic conductivity, and California Bearing Ratio, CBR) as well as unconsolidated undrained static triaxial testing. In triaxial tests, moisture levels ranged from 60% to 100% of optimum moisture content, but compaction levels ranged from 90% to 98% of maximum dry density. The hydraulic conductivity for blends is approximately 2x10-6 cm/s, which indicates a relatively low hydraulic conductivity. Results show a proportional linear relationship between the shear strength of blends and the level of compaction. Despite this, both apparent cohesion and shear strength exhibited reverse linear trends. As expected, more compaction effort resulted in more particle breakage. Strict control should be performed over the compaction process to achieve the required compaction level which resulting in pavement materials being stiffer.

Keywords

Shear Strength, Construction and Demolition Waste, Compaction Level Moisture State, Sustainable Highway Engineering

Publication Link

https://doi.org/10.1371/journal.pone.0298765

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact