Skip to main content
 

 

 

Machine Learning Approach for Autonomous Detection and Classification of COVID-19 Virus

Author name : OSAMA REZQ FADLE SHAHIN
Publication Date : 2022-07-01
Journal Name : Computers and Electrical Engineering

Abstract

As people all over the world are vulnerable to be affected by the COVID-19 virus, the automatic detection of such a virus is an important concern. The paper aims to detect and classify corona virus using machine learning. To spot and identify corona virus in CT-Lung screening and Computer-Aided diagnosis (CAD) system is projected to distinguish and classifies the COVID-19. By utilizing the clinical specimens obtained from the corona-infected patients with the help of some machine learning techniques like Decision Tree, Support Vector Machine, K-means clustering, and Radial Basis Function. While some specialists believe that the RT-PCR test is the best option for diagnosing Covid-19 patients, others believe that CT scans of the lungs can be more accurate in diagnosing corona virus infection, as well as being less expensive than the PCR test. The clinical specimens include serum specimens, respiratory secretions, and whole blood specimens. Overall, 15 factors are measured from these specimens as the result of the previous clinical examinations. The proposed CAD system consists of four phases starting with the CT lungs screening collection, followed by a pre-processing stage to enhance the appearance of the ground glass opacities (GGOs) nodules as they originally lock hazy with fainting contrast. A modified K-means algorithm will be used to detect and segment these regions. Finally, the use of detected, infected areas that obtained in the detection phase with a scale of 50×50 and perform segmentation of the solid false positives that seem to be GGOs as inputs and targets for the machine learning classifiers, here a support vector machine (SVM) and Radial basis function (RBF) has been utilized. Moreover, a GUI application is developed which avoids the confusion of the doctors for getting the exact results by giving the 15 input factors obtained from the clinical specimens.

Keywords

COVID-19 detection Computer-Aided Diagnosis (CAD) CT lung screening Machine learning classifiers (SVM, RBF) Ground Glass Opacities (GGOs)

Publication Link

https://doi.org/10.1016/j.compeleceng.2022.108055

Block_researches_list_suggestions

Suggestions to read

“Synthesis and Characterization study of SnO2/α-Fe2O3, In2O3/α-Fe2O3 and ZnO/α-Fe2O3 thin films and its application as transparent conducting electrode in silicon heterojunction solar cell”
Asma Arfaoui
Oral cancer stem cells: A comprehensive review of key drivers of treatment resistance and tumor recurrence
DR KALADHAR REDDY AILENI
Modeling the Social Factors Affecting Students Satisfaction with Online Learning: A Structural Equation Modeling Approach
ABDULHAMEED RAKAN ALENEZI
Higher Knee Muscles Co-Contractions are Observed in Individuals Exhibiting Loading Asymmetry Early after ACL Reconstruction. The Combined Sections Meeting
ABDULMAJEED BARAKAT MUBARAK ALFAYYADH
Contact