Skip to main content

Multi-instance cancellable biometrics schemes based on generative adversarial network

Author name : MAYADA TAREK HASSAN MOHAMED ELGHAYSHA
Publication Date : 2021-05-04
Journal Name : Springer

Abstract

The main role of cancellable biometric schemes is to protect the privacy of the enrolled users. The protected biometric data are generated by applying a parametrized transformation function to the original biometric data. Although cancellable biometric schemes achieve high security levels, they may degrade the recognition accuracy. One of the mostwidely used approaches to enhance the recognition accuracy in biometric systems is to combine several instances of the same biometric modality. In this paper, two multi-instance cancellable biometric schemes based on iris traits are presented. The iris biometric trait is used in both schemes because of the reliability and stability of iris traits compared to the other biometric traits. A generative adversarial network (GAN) is used as a transformation function for the biometric features. The first scheme is based on a pre-transformation feature-level fusion, where the binary features of multiple instances are concatenated and inputted to the transformation phase. On the other hand, the second scheme is based on a post-transformation feature-level fusion, where each instance is separately inputted to the transformation phase. Experiments conducted on the CASIA Iris-V3-Internal database confirm the high recognition accuracy of the two proposed schemes. Moreover, the security of the proposed schemes is analyzed, and their robustness against two well-known types of attacks is proven.

Keywords

cancellable biometric, multi-instance

Publication Link

https://www.semanticscholar.org/paper/Multi-instance-cancellable-biometrics-schemes-based-Tarek-Hamouda/07ee6ad91a5377b19d703798d386298d00fa63c6

Block_researches_list_suggestions

Suggestions to read

Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact