Skip to main content

Wet synthesis of magnetically retrievable Mn/Nd co-doped cobalt ferrites for visible light-driven photocatalytic annihilation of azo dye

Author name : RASH MOHAMED MOHAMED KAMAL ABDELBAKY
Publication Date : 2024-08-01
Journal Name : Materials Science in Semiconductor Processing

Abstract

In this study, a surfactant assisted wet-chemical method was used to synthesize manganese and neodymium co-doped cobalt ferrite [Co1-xFe2-y O4 (x = Mn, y = Nd)]. The co-doping strategy was adopted to enhance the magnetic properties, tune the band gap, and hamper charge–recombination in the spinel ferrite during the photocatalytic application. Different dopant concentrations, namely Mn = Nd = 1.1 %, 2.2 %, 3.3 %, and, 4.4 %, were used to synthesize MNCF-1, MNCF-2, MNCF-3, and MNCF-4 samples, respectively. The pristine (CF) and co-doped samples (MNCF) were characterized via TGA, PXRD, Raman, FTIR, and UV/Vis techniques to examine the impact of co-doping on the various physicochemical and thermal properties. The optical study proposed the MNCF-4 sample with a band gap value of 2.88 eV as most suitable for visible-light harvesting. A dielectric study showed that co-doped ferrite with a higher dopant concentration (MNCF-4) exhibits boosted AC conductivity and substantially decreased leakage current as compared to the bare and co-doped samples. As the concentrations of the co-dopants increase, the coercivity field (Hc) decreases while the remanent magnetization (Mr) and saturation magnetization (Ms) increase. The MNCF-4 material exhibited the highest magnetic properties, ensuring its full and quick magnetic recovery at the completion of the photocatalytic process. In the context of photocatalytic applications, it was observed that the MNCF-4 catalyst exhibited a mineralization rate constant value of 0.016 min−1 for 92.5 % crystal violet (CV) dye. To mitigate the impact of dye sensitization, the photocatalytic efficiency of MNCF-4 material was assessed by using phenol as a representative colourless organic pollutant. The enhanced magnetic properties of the MNCF-4 catalyst enable its complete magnetic recovery and 90.2 % retention of the photocatalytic activities after five reusability tests.

Keywords

photocatalytic, azo dye, crystal violet (CV) dye

Publication Link

https://doi.org/10.1016/j.mssp.2024.108462

Block_researches_list_suggestions

Suggestions to read

Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact