Luteolin-loaded Invasomes Gel for Transdermal Delivery: Development, Optimization, in-vitro, and Preclinical Evaluation
Abstract
抄録
Luteolin (LN), is an herbal bioactive flavone and exhibits many pharmacological activities. However, the bioavailability of LN is limited due to its inadequate solubility and significant first-pass metabolism. The present study developed transdermal LN-loaded invasomes (IVM) gel to improve the therapeutic efficacy. The LN-IVM was prepared and optimized by 2 3 factorial designs. LN-IVM was characterized for physicochemical parameters. The optimized LN-IVM (LN-IVMopt) was incorporated into HPMC-K4M gel and evaluated for viscosity, spreadability, and irritation. Further LN-IVM gel was evaluated for drug release, ex-vivo permeation, pharmacokinetic and pharmacodynamics study. LN-IVMopt showed 300.8±2.67 nm of VS, 0.258 of PDI, 89.92±1.29% of EE, and a zeta potential of –18.2 mV. LN-IVM exhibited spherical morphology. FTIR and XRD results demonstrated that LN was encapsulated into IVM matrix. The optimized IVM gel (LN-IVMoptG2) exhibited excellent viscosity, spreadability, and sustained release of LN (91.32±2.95% in 24 h). LN-IVMoptG2 exhibited statistically significant (p < 0.05) higher flux (5.79 µg/h/cm2 ) than LN-gel (2.09 µg/h/cm2 ). The apparent permeability coefficient of plain LN gel and LN- IVMoptG was 1.15×10–5 cm/min and 3.22×10–5 cm/min respectively. LN-IVMoptG2 showed no irritation (score 0.0) throughout the study (60 min). The relative bioavailability of LN from LN-IVMopt-G2 (transdermal) was 2.38±0.19 fold as compared to LN-Sus (oral) and 1.81±0.15-fold than plain LN-gel (transdermal). The LN-IVMoptG2 showed a substantial lessening in the paw volume up to 12 h (17.48±1.94% swelling) than plain LN-gel (44.77±2.82% swelling). The finding concluded that the IVM gel is a novel, effective, and safe approach for the delivery of LN transdermally to improve its therapeutic efficacy.