Skip to main content
 

 

 

YOLO-Based Deep Learning Model for Pressure Ulcer Detection and Classification

Author name : BADER MUNIF KHALAF ALDUGHAYFIQ
Publication Date : 2023-04-25
Journal Name : Healthcare

Abstract

Pressure ulcers are significant healthcare concerns affecting millions of people worldwide, particularly those with limited mobility. Early detection and classification of pressure ulcers are crucial in preventing their progression and reducing associated morbidity and mortality. In this work, we present a novel approach that uses YOLOv5, an advanced and robust object detection model, to detect and classify pressure ulcers into four stages and non-pressure ulcers. We also utilize data augmentation techniques to expand our dataset and strengthen the resilience of our model. Our approach shows promising results, achieving an overall mean average precision of 76.9% and class-specific mAP50 values ranging from 66% to 99.5%. Compared to previous studies that primarily utilize CNN-based algorithms, our approach provides a more efficient and accurate solution for the detection and classification of pressure ulcers. The successful implementation of our approach has the potential to improve the early detection and treatment of pressure ulcers, resulting in better patient outcomes and reduced healthcare costs.

Keywords

classification of pressure ulcers; deep learning; object detection; YOLOv5

Publication Link

https://doi.org/10.3390/healthcare11091222

Block_researches_list_suggestions

Suggestions to read

“Synthesis and Characterization study of SnO2/α-Fe2O3, In2O3/α-Fe2O3 and ZnO/α-Fe2O3 thin films and its application as transparent conducting electrode in silicon heterojunction solar cell”
Asma Arfaoui
Oral cancer stem cells: A comprehensive review of key drivers of treatment resistance and tumor recurrence
DR KALADHAR REDDY AILENI
Modeling the Social Factors Affecting Students Satisfaction with Online Learning: A Structural Equation Modeling Approach
ABDULHAMEED RAKAN ALENEZI
Higher Knee Muscles Co-Contractions are Observed in Individuals Exhibiting Loading Asymmetry Early after ACL Reconstruction. The Combined Sections Meeting
ABDULMAJEED BARAKAT MUBARAK ALFAYYADH
Contact