A surrogate safety analysis at sharp gore areas of diverging freeway ramps using micro simulation under congested traffic conditions
Abstract
Safety at the gore areas near diverging ramps is very crucial during planning and implementation of highway safety improvement programs. Limited research has been conducted on safety at the gore areas on arterial roads. This study aims at investigating the impact of improving a sharp gore area in Lincoln, Nebraska by performing a micro simulation before-and-after study with respect to its underlying state of safety and congestion. Data on travel times and trafc volumes for peak hours are incorporated after successful calibration to fnd out how a geometric intervention can decrease mobility issues as well as the likelihood of crash involvement. This study has utilized VISSIM software package to run the simulation however, to perform safety analysis, Surrogate Safety Assessment Model (SSAM) is used which is developed by the Federal Highway Administration (FHWA). During the model calibration, custom driving behaviors are created to represent driving tendencies of familiar drivers. The simulation results indicated that by adding an auxiliary lane near the gore area, the mobility issues such as bottle necks, lane changing dilemmas and queue lengths are substantially decreased. However, geometric interventions such as provision of a separate lane, increasing ramp spacing, nose spacing, deceleration area and queue storage area considerably reduced the likelihood of rear-end and lane changing crashes. Surrogate safety assessment in diverging ramps, particularly for sharp gores, has not previously been studied, and this study can serve as a primary footmark for future research on ramp-gores safety.