Skip to main content
 

 

 

Modeling resilient modulus of subgrade soils using LSSVM optimized with swarm intelligence algorithms

Author name : FAYEZ KHALAF RAHIL ALANAZI
Publication Date : 2022-08-24
Journal Name : Scientific Reports

Abstract

Resilient modulus (Mr) of subgrade soils is one of the crucial inputs in pavement structural design methods. However, the spatial variability of soil properties and the nature of test protocols, the laboratory determination of Mr has become inexpedient. This paper aims to design an accurate soft computing technique for the prediction of Mr of subgrade soils using the hybrid least square support vector machine (LSSVM) approaches. Six swarm intelligence algorithms, namely particle swarm optimization (PSO), grey wolf optimizer (GWO), symbiotic organisms search (SOS), salp swarm algorithm (SSA), slime mould algorithm (SMA), and Harris hawks optimization (HHO) have been applied and compared to optimize the LSSVM parameters. For this purpose, a literature dataset (891 datasets) of different types of soils has been used to design and evaluate the proposed models. The input variables in all of the proposed models included confining stress, deviator stress, unconfined compressive strength, degree of soil saturation, soil moisture content, optimum moisture content, plasticity index, liquid limit, and percent of soil particles (P #200). The accuracy of the proposed models was assessed by comparing the predicted with the observed of Mr values with respect to different statistical analyses, i.e., root means square error (RMSE) and determination coefficient (R2). For modeling the Mr of subgrade soils, percent passing No. 200 sieve, optimum moisture content, and unconfined compressive strength were found to be the most significant variables. It is observed that the performance of LSSVM-GWO, LSSVM-SOS, and LSSVM-SSA outperforms other models in predicting accurate values of Mr. The (RMSE and R2) of the LSSVM-GWO, LSSVM-SSA, and LSSVM-SOS are (6.79 MPa and 0.940), (6.78 MPa and 0.940), and (6.72 MPa and 0.942), respectively, and hence, LSSVM-SOS can be used for high estimating accuracy of Mr of subgrade soils.

Keywords

Resilient Modulus (Mr); Least Square Support Vector Machine (LSSVM); Swarm Intelligence Algorithms; Subgrade Soils Prediction

Publication Link

https://doi.org/10.1038/s41598-022-17429-z

Block_researches_list_suggestions

Suggestions to read

Photocurrent and electrical properties of SiGe Nanocrystals grown on insulator via Solid-state dewetting of Ge/SOI for Photodetection and Solar cells Applications
MOHAMMED OMAR MOHAMMEDAHMED IBRAHIM
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
EBTSAM KHALEFAH H ALENEZY
Efficient framework for energy management of microgrid installed in Aljouf region considering renewable energy and electric vehicles
Ali fathy mohmmed ahmed
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
AHMED HAMAD FARHAN ALANAZI
Contact