Skip to main content

A novel integrated approach of RUNge Kutta optimizer and ANN for estimating compressive strength of self-compacting concrete

Author name : MOHAMED FARAG ABDELMONGY DARWEESH
Publication Date : 2023-06-10
Journal Name : Case Studies in Construction Materials

Abstract

In this study machine learning models are used that forecast the compressive strength of self-compacting concrete (SCC) depending on percentage replacement of cement by supplementary cementitious material. In order to predict the mechanical property of SCC, a hybrid artificial neural network (ANN) along with metaheuristic optimization techniques and two traditional models were employed which comprised of 300 datasets. Several input factors are employed in the modelling process, including cement, the water-binder ratio, coarse aggregate, fine aggregate, fly ash (FA) and the superplasticizer. ANN hybridised with RUNge Kutta optimizer (RUN) was chosen as one of the top predictive models based on coefficient of determination ((R2 = 0.933 (in training) and R2 = 0.9203 (in testing))) findings and model validation. According to the rank analysis, the ANN-RUN surpassed other models with a score of 128. Permutation feature importance, statistical analysis, and comparisons amongst regression models are used to determine the models' efficacy. The best input parameters were selected based on person correlation and density plot. Also, the use of Taylor diagrams and accuracy matrices was also examined for the visual comprehension of the data which has shown similar results as discussed above. The results show that the suggested machine learning models attained consistent accuracy and can be used as a robust technique to predict the compressive strength of SCC.

Keywords

Compressive strength; Self-compacting concrete; Metaheuristic optimization; RUNge Kutta optimizer

Publication Link

https://doi.org/10.1016/j.cscm.2023.e02163

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact