Skip to main content
 

 

 

Low-Power Multiplexer Structures Targeting Efficient QCA Nanotechnology Circuit Designs

Author name : AMJAD FAISAL A Almatrood
Publication Date : 2021-08-06
Journal Name : Electronics

Abstract

Quantum-dot cellular automata (QCA) technology is considered to be a possible alternative for circuit implementation in terms of energy efficiency, integration density and switching frequency. Multiplexer (MUX) can be considered to be a suitable candidate for designing QCA circuits. In this paper, two different structures of energy-efficient 2 × 1 MUX designs are proposed. These MUXes
outperform the best existing design in terms of power consumption with approximate reductions of 26% and 35%. Moreover, similar or better performance factors such as area and latency are achieved compared to the available designs. These MUX structures can be used as fundamental energy-efficient building blocks for replacing the majority-based structures in QCA. The scalability property of the proposed MUXes is excellent and can be used for energy-efficient complex QCA
circuit designs.

Keywords

low-power QCA circuit; multiplexer; energy dissipation; logic synthesis

Publication Link

https://www.mdpi.com/2079-9292/10/16/1885

Block_researches_list_suggestions

Suggestions to read

Photocurrent and electrical properties of SiGe Nanocrystals grown on insulator via Solid-state dewetting of Ge/SOI for Photodetection and Solar cells Applications
MOHAMMED OMAR MOHAMMEDAHMED IBRAHIM
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
EBTSAM KHALEFAH H ALENEZY
Efficient framework for energy management of microgrid installed in Aljouf region considering renewable energy and electric vehicles
Ali fathy mohmmed ahmed
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
AHMED HAMAD FARHAN ALANAZI
Contact