Skip to main content
 

 

 

A new fractional viscoelastic model for an infinitely thermoelastic body with a spherical cavity including Caputo-Fabrizio operator without singular kernel

Author name : KHALIL MOHAMED KHALIL SHALABY
Publication Date : 2021-11-17
Journal Name : Chinese Journal of Physics

Abstract

Many applications and contexts including materials science, metallurgy, and solid-state physics, are concerned with the study of the behavior of viscoelastic materials. In addition, any composite or complex construction containing embedded polymers exhibits viscoelastic behavior under static and dynamic stress conditions. Wide types of linear/nonlinear constitutive models have been proposed to define the viscoelastic deformation process of viscoelastic materials in order to explore their mechanical behavior. However, it has been shown that the constitutive relationship in the integer-order of stress-strain available in conventional viscoelastic models may fail in some types of situations and do not match well with empirical evidence. In this paper, a novel mathematical model is provided that uses Caputo-Fabrizio fractional-order derivatives to describe the viscoelastic phenomena and is consistent with thermodynamic principles. The Caputo-Fabrizio kernel has many features, such as nonlocality and non-singularity in addition to the exponential form. The suggested model is used to study the dynamic reactions of an unbounded body with a spherical cavity made of viscoelastic material subjected to time-varying heat. Using the Laplace transform technique, numerical calculations of many physical fields are obtained and explored in depth.

Keywords

Thermoviscoelastic Fractional-order Caputo-Fabrizo DPL model -spherical cavity

Publication Link

https://www.sciencedirect.com/science/article/abs/pii/S0577907321002793?via%3Dihub

Block_researches_list_suggestions

Suggestions to read

Photocurrent and electrical properties of SiGe Nanocrystals grown on insulator via Solid-state dewetting of Ge/SOI for Photodetection and Solar cells Applications
MOHAMMED OMAR MOHAMMEDAHMED IBRAHIM
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
EBTSAM KHALEFAH H ALENEZY
Efficient framework for energy management of microgrid installed in Aljouf region considering renewable energy and electric vehicles
Ali fathy mohmmed ahmed
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
AHMED HAMAD FARHAN ALANAZI
Contact