Skip to main content

Phytochemicals Neogitogenin and Samogenin Hold Potentials for Hepatocyte Growth Factor Receptor-Targeted Cancer Treatment

Author name : ABDELBASET ELASBALI
Publication Date : 2024-10-10
Journal Name : OMICS: A Journal of Integrative Biology

Abstract

Protein kinases are key targets for cancer therapies, with the c-Met receptor tyrosine kinase (MET) and its ligand, hepatocyte growth factor, playing a role in various cancers, including non-small cell lung cancer, gastric cancer, and hepatocellular carcinoma. Although small-molecule inhibitors have been designed to target MET, the development of drug resistance remains a significant challenge to advancing therapeutic strategies. In this study, we employed virtual screening of plant-based compounds sourced from the IMPPAT 2.0 databank to identify potent inhibitors of MET. Preliminary filtering based on the physicochemical parameters following Lipinski’s rule of five and pan-assay interference compounds criteria were applied to prioritize hits. Subsequent molecular docking, pharmacokinetic evaluation, prediction of activity spectra for biologically active substances, and specificity assessments facilitated the identification of two promising phytochemicals, neogitogenin and samogenin. Both phytochemicals exhibited considerable drug-like properties with notable binding affinity and selectivity toward MET. Molecular dynamics simulation studies showed the conformational stability of MET with neogitogenin and samogenin. Taken together, these findings suggest that neogitogenin and samogenin hold potential as lead molecules for the development of MET-targeted therapeutics. We call for further evaluations of these phytochemicals in preclinical and experimental studies for anticancer drug discovery and development.

Keywords

Protein kinases, Neogitogenin and Samogenin, Met receptor tyrosine kinase, molecular docking , anticancer drug discovery

Publication Link

https://doi.org/10.1089/omi.2024.0169

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact