Skip to main content
 

 

 

RTF-RCNN: An Architecture for Real-Time Tomato Plant Leaf Diseases Detection in Video Streaming Using Faster-RCNN

Author name : MOHAMMAD MOHIUDDIN AZAD
Publication Date : 2022-10-17
Journal Name : Bioengineering

Abstract

In today’s era, vegetables are considered a very important part of many foods. Even though every individual can harvest their vegetables in the home kitchen garden, in vegetable crops, Tomatoes are the most popular and can be used normally in every kind of food item. Tomato plants get affected by various diseases during their growing season, like many other crops. Normally, in tomato plants, 40–60% may be damaged due to leaf diseases in the field if the cultivators do not focus on control measures. In tomato production, these diseases can bring a great loss. Therefore, a proper mechanism is needed for the detection of these problems. Different techniques were proposed by researchers for detecting these plant diseases and these mechanisms are vector machines, artificial neural networks, and Convolutional Neural Network (CNN) models. In earlier times, a technique was used for detecting diseases called the benchmark feature extraction technique. In this area of study for detecting tomato plant diseases, another model was proposed, which was known as the real-time faster region convolutional neural network (RTF-RCNN) model, using both images and real-time video streaming. For the RTF-RCNN, we used different parameters like precision, accuracy, and recall while comparing them with the Alex net and CNN models. Hence the final result shows that the accuracy of the proposed RTF-RCNN is 97.42%, which is higher than the rate of the Alex net and CNN models, which were respectively 96.32% and 92.21%.

Keywords

Disease detection

Publication Link

https://doi.org/10.3390/bioengineering9100565

Block_researches_list_suggestions

Suggestions to read

Photocurrent and electrical properties of SiGe Nanocrystals grown on insulator via Solid-state dewetting of Ge/SOI for Photodetection and Solar cells Applications
MOHAMMED OMAR MOHAMMEDAHMED IBRAHIM
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
EBTSAM KHALEFAH H ALENEZY
Efficient framework for energy management of microgrid installed in Aljouf region considering renewable energy and electric vehicles
Ali fathy mohmmed ahmed
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
AHMED HAMAD FARHAN ALANAZI
Contact