Representation of Knowledge by Decision Trees for Decision Tables with Multiple Decisions
Abstract
In this paper, we study decisions trees for decision tables with multiple decisions as a means for knowledge representation. To this end, we consider three methods to design decision trees and evaluate the number of nodes, and local and global misclassification rates of constructed trees. The considered methods are based on a dynamic programming algorithm for bi-objective optimization of decision trees. The goal of this study is to construct trees with reasonable number of nodes and at the same time reasonable accuracy. Previously, it was mentioned that the consideration of only the global misclassification rate of the decision tree is not enough and it is necessary to study also the local misclassification rate. The reason is that even if the global misclassification rate related to the whole tree is enough small, the local misclassification rate related to the terminal nodes of the tree can be too big. One of the …