Skip to main content
 

 

 

An Intelligent Groundwater Management Recommender System

Author name : KHALAF OKAB KHALAF ALSALEM
Publication Date : 2021-11-09
Journal Name : Indian Society for Education and Environment (iSee)

Abstract

Objectives: To explore the area of groundwater that can assist to improve the accessibility of freshwater. Methods : We propose a machine-deep learning model based on a recommender system to manage and classify groundwater. Finding: The main goal of our proposed approach is to classify groundwater into multi-labels, which are drinking water (Excellent or Good) or Irrigation water (Poor or Very Poor) with guarantee a higher accuracy score. The recommender system is applied on the testing dataset and the accuracy of the deep learning technique was 91% and the accuracy of machine leaning technique was 84%.

Keywords

Groundwater Management; Intelligent System; Recommender Systems; Datamining; Machine Learning; Deep Learning

Publication Link

https://doi.org/10.17485/IJST/v14i37.1332

Block_researches_list_suggestions

Suggestions to read

Photocurrent and electrical properties of SiGe Nanocrystals grown on insulator via Solid-state dewetting of Ge/SOI for Photodetection and Solar cells Applications
MOHAMMED OMAR MOHAMMEDAHMED IBRAHIM
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
EBTSAM KHALEFAH H ALENEZY
Efficient framework for energy management of microgrid installed in Aljouf region considering renewable energy and electric vehicles
Ali fathy mohmmed ahmed
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
AHMED HAMAD FARHAN ALANAZI
Contact