Skip to main content

Fast reaching law based integral terminal sliding mode controller for photovoltaic-fuel cell-battery-super capacitor based direct-current microgrid

Author name : MOHANA SHANDAL MOHANA ALANAZI
Publication Date : 2022-11-02
Journal Name : Journal of Energy Storage

Abstract

In this paper, a fast reaching law based integral terminal sliding mode controller has been designed for photovoltaic based DC microgrid system. The proposed microgrid system comprised of photovoltaic system as main energy source and fuel cell, battery and supercapacitor as auxiliary energy sources. To avoid the stress on individual energy sources, an energy management system has been devised to allocate the load among these energy sources. Using the Lyapunov stability criteria, the stability of proposed framework has been validated. The performance of the proposed controller has been verified by simulating the dc microgrid under varying environmental conditions and load demands in MATLAB/Simulink platform. The comparison of the proposed control laws against PID and lyapunov controllers has been provided in order to assess its accuracy and robustness. The hardware-in-loop experiments have been performed to verify the real-time efficacy of the proposed microgrid system.

Keywords

FRL-ITSMC i, Photovoltaic-Fuel Cell-battery-Supercapacitor, DC microgrid, Controller hardware-in-the-loop (C-HIL)

Publication Link

https://doi.org/10.1016/j.est.2022.105915

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
Contact