Skip to main content
 

 

 

Olive Leaf Disease Detection via Wavelet Transform and Feature Fusion of Pre-trained Deep Learning Models

Author name : MAHMOOD ABDELMONEIM MAHMOOD MOHAMED
Publication Date : 2024-03-26
Journal Name : Computers, Materials & Continua

Abstract

Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses. Early detection of these diseases is essential for effective management. We propose a novel transformed wavelet, feature-fused, pre-trained deep learning model for detecting olive leaf diseases. The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images. The model has four main phases: preprocessing using data augmentation, three-level wavelet transformation, learning using pre-trained deep learning models, and a fused deep learning model. In the preprocessing phase, the image dataset is augmented using techniques such as resizing, rescaling, flipping, rotation, zooming, and contrasting. In wavelet transformation, the augmented images are decomposed into three frequency levels. Three pre-trained deep learning models, EfficientNet-B7, DenseNet-201, and ResNet-152-V2, are used in the learning phase. The models were trained using the approximate images of the third-level sub-band of the wavelet transform. In the fused phase, the fused model consists of a merge layer, three dense layers, and two dropout layers. The proposed model was evaluated using a dataset of images of healthy and infected olive leaves. It achieved an accuracy of 99.72% in the diagnosis of olive leaf diseases, which exceeds the accuracy of other methods reported in the literature. This finding suggests that our proposed method is a promising tool for the early detection of olive leaf diseases.

Keywords

Olive leaf diseases; wavelet transform; deep learning; feature fusion

Publication Link

https://doi.org/10.32604/cmc.2024.047604

Block_researches_list_suggestions

Suggestions to read

“Synthesis and Characterization study of SnO2/α-Fe2O3, In2O3/α-Fe2O3 and ZnO/α-Fe2O3 thin films and its application as transparent conducting electrode in silicon heterojunction solar cell”
Asma Arfaoui
Oral cancer stem cells: A comprehensive review of key drivers of treatment resistance and tumor recurrence
DR KALADHAR REDDY AILENI
Modeling the Social Factors Affecting Students Satisfaction with Online Learning: A Structural Equation Modeling Approach
ABDULHAMEED RAKAN ALENEZI
Higher Knee Muscles Co-Contractions are Observed in Individuals Exhibiting Loading Asymmetry Early after ACL Reconstruction. The Combined Sections Meeting
ABDULMAJEED BARAKAT MUBARAK ALFAYYADH
Contact