Skip to main content
 

 

 

An Intelligent Groundwater Management Recommender System

Author name : MAHMOOD ABDELMONEIM MAHMOOD MOHAMED
Publication Date : 2021-11-09
Journal Name : INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY

Abstract

Objectives: To explore the area of groundwater that can assist to improve the accessibility of freshwater. Methods : We propose a machine-deep learning model based on a recommender system to manage and classify groundwater. Finding: The main goal of our proposed approach is to classify groundwater into multi-labels, which are drinking water (Excellent or Good) or Irrigation water (Poor or Very Poor) with guarantee a higher accuracy score. The recommender system is applied on the testing dataset and the accuracy of the deep learning technique was 91% and the accuracy of machine leaning technique was 84%.

Keywords

Groundwater Management; Intelligent System; Recommender Systems; Datamining; Machine Learning; Deep Learning

Publication Link

https://doi.org/ 10.17485/IJST/v14i37.1332

Block_researches_list_suggestions

Suggestions to read

“Synthesis and Characterization study of SnO2/α-Fe2O3, In2O3/α-Fe2O3 and ZnO/α-Fe2O3 thin films and its application as transparent conducting electrode in silicon heterojunction solar cell”
Asma Arfaoui
Oral cancer stem cells: A comprehensive review of key drivers of treatment resistance and tumor recurrence
DR KALADHAR REDDY AILENI
Modeling the Social Factors Affecting Students Satisfaction with Online Learning: A Structural Equation Modeling Approach
ABDULHAMEED RAKAN ALENEZI
Higher Knee Muscles Co-Contractions are Observed in Individuals Exhibiting Loading Asymmetry Early after ACL Reconstruction. The Combined Sections Meeting
ABDULMAJEED BARAKAT MUBARAK ALFAYYADH
Contact