Skip to main content
 

 

 

Layer-Weighted Attention and Ascending Feature Selection: An Approach for Seriousness Level Prediction Using the FDA Adverse Event Reporting System

Author name : AYMAN MOHAMED MOSTAFA HASSANEEN
Publication Date : 2024-04-13
Journal Name : Applied Sciences

Abstract

In this study, we introduce a novel combination of layer-static-weighted attention and
ascending feature selection techniques to predict the seriousness level of adverse drug events using
the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). We utilized
natural language processing (NLP) to analyze the terms in the active substance field, in addition to
considering demographic and event information such as patient sex, healthcare provider qualification,
and drug characterization. Our ascending feature selection method, which progressively incorporates
additional features based on their importance, demonstrated continuous enhancements in prediction
performance. Simultaneously, we employed a layer-static-weighted attention technique, which
dynamically adjusts the model’s focus between natural language processing (NLP) and demographic
features. This technique achieved its best performance at a balanced weight of 50%, yielding an
average test accuracy of 74.56% and CV ROC score of 0.83 when 4000 features were included,
indicating a compelling advantage to include a larger volume of meaningful features. By integrating
these methodologies, we constructed a robust model capable of effectively predicting seriousness
levels, offering significant potential for improving pharmacovigilance and enhancing drug safety
monitoring. The results underscore the value of NLP and demographic data in predicting drug event
seriousness and demonstrate the effectiveness of our combined techniques. We encourage further
research to refine these methods and evaluate their application to other clinical datasets.

Keywords

layer-static-weighted attention; ascending feature selection; natural language processing; drug event seriousness; drug safety monitoring

Publication Link

https://doi.org/10.3390/app14083280

Block_researches_list_suggestions

Suggestions to read

Photocurrent and electrical properties of SiGe Nanocrystals grown on insulator via Solid-state dewetting of Ge/SOI for Photodetection and Solar cells Applications
MOHAMMED OMAR MOHAMMEDAHMED IBRAHIM
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
EBTSAM KHALEFAH H ALENEZY
Efficient framework for energy management of microgrid installed in Aljouf region considering renewable energy and electric vehicles
Ali fathy mohmmed ahmed
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
AHMED HAMAD FARHAN ALANAZI
Contact