Skip to main content
 

 

 

Preparation and Characterization of Magnetite Talc (Fe3O4@Talc) Nanocomposite as an Effective Adsorbent for Cr(VI) and Alizarin Red S Dye

Author name : AbdElAziz Ahmed H Nayl
Publication Date : 2022-05-09
Journal Name : Materials

Abstract

In this work, the adsorption of Cr(VI) ions and the organic dye Alizarin Red S (ARS) was investigated using magnetite talc (Fe3O4@Talc) nanocomposite. Different characterization techniques such as scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray Diffraction (XRD), and thermogravimetric analysis (TGA) were used to demonstrate the physical and chemical properties of the fabricated Fe3O4@Talc nanocomposite. In addition, the adsorption isothermic, kinetic, and thermodynamic properties were illustrated. The results demonstrate that the investigated adsorption processes obeyed the Langmuir isotherm model for Cr(VI) and the Freundlich isotherm model for ARS dye, with a maximum adsorption capacity of 13.5 and 11.76 mg·g−1, respectively, controlled by pseudo second-order kinetics. Regeneration and reusability studies demonstrated that the prepared Fe3O4@Talc nanocomposite is a promising and stable adsorbent with considerable reusability potential.

Keywords

impregnated Talc; Fe3O4; Cr(VI); Alizarin Red S; magnetic nanoparticles

Publication Link

https://doi.org/10.3390/ma15093401

Block_researches_list_suggestions

Suggestions to read

Photocurrent and electrical properties of SiGe Nanocrystals grown on insulator via Solid-state dewetting of Ge/SOI for Photodetection and Solar cells Applications
MOHAMMED OMAR MOHAMMEDAHMED IBRAHIM
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
EBTSAM KHALEFAH H ALENEZY
Efficient framework for energy management of microgrid installed in Aljouf region considering renewable energy and electric vehicles
Ali fathy mohmmed ahmed
Comparative analysis of high-performance UF membranes with sulfonated polyaniline: Improving hydrophilicity and antifouling capabilities for water purification
AHMED HAMAD FARHAN ALANAZI
Contact