Skip to main content
 

 

 

Prediction of covid-19 transmission in the united states using google search trends

Author name : MESHRIF FAYAD M ALRUILY
Publication Date : 2021-11-03
Journal Name : Computers, Materials and Continua

Abstract

Accurate forecasting of emerging infectious diseases can guide public health officials in making appropriate decisions related to the allocation of public health resources. Due to the exponential spread of the COVID-19 infection worldwide, several computational models for forecasting the transmission and mortality rates of COVID-19 have been proposed in the literature. To accelerate scientific and public health insights into the spread and impact of COVID-19, Google released the Google COVID-19 search trends symptoms open-access dataset. Our objective is to develop 7 and 14-day-ahead forecasting models of COVID-19 transmission and mortality in the US using the Google search trends for COVID-19 related symptoms. Specifically, we propose a stacked long short-term memory (SLSTM) architecture for predicting COVID-19 confirmed and death cases using historical time series data combined with auxiliary time series data from the Google COVID-19 search trends symptoms dataset. Considering the SLSTM networks trained using historical data only as the base models, our base models for 7 and 14-day-ahead forecasting of COVID cases had the mean absolute percentage error (MAPE) values of 6.6% and 8.8%, respectively. On the other side, our proposed models had improved MAPE values of 3.2% and 5.6%, respectively. For 7 and 14 -day-ahead forecasting of COVID-19 deaths, the MAPE values of the base models were 4.8% and 11.4%, while the improved MAPE values of our proposed models were 4.7% and 7.8%, respectively. We found that the Google search trends for “pneumonia,” “shortness of breath,” and “fever” are the most informative search trends for predicting COVID-19 transmission. We also found that the search trends for “hypoxia” and “fever” were the most informative trends for forecasting COVID-19 mortality.

Keywords

Forecasting COVID-19 transmission and mortality in the US; stacked LSTM; SARS-COV-2 and google COVID-19 search trends

Publication Link

https://doi.org/10.32604/cmc.2022.020714

Block_researches_list_suggestions

Suggestions to read

“Synthesis and Characterization study of SnO2/α-Fe2O3, In2O3/α-Fe2O3 and ZnO/α-Fe2O3 thin films and its application as transparent conducting electrode in silicon heterojunction solar cell”
Asma Arfaoui
Influence of zinc acetate on HPMC/CMC polymer blend: Investigation of their composites’ structural, optical, and dielectric properties for dielectric capacitor applications
ghallab ahmed ahmed nassar sobhy
Study of the structural, optical and electrical properties of PVA/SA performance by incorporating Al2O3 nanoparticles
ghallab ahmed ahmed nassar sobhy
Characterization and Cytotoxic Assessment of Bis(2-hydroxy-3-carboxyphenyl)methane and Its Nickel(II) Complex
ghallab ahmed ahmed nassar sobhy
Contact