تجاوز إلى المحتوى الرئيسي

Decentralized multi-agent federated and reinforcement learning for smart water management and disaster response

Author name : AHMED IBRAHIM TALOBA MOHAMED
Publication Date : 2025-04-05
Journal Name : Alexandria Engineering Journal

Abstract

Water resource management and disaster response have become some of the most challenging tasks, especially when disasters pose a threat, as delays could lead to more impacts. The centralized system used for water dynamics and disaster control usually presents itself as a scalability problem since more clients present a problem, the system's latency is high, and the system is always prone to a single-point failure. The previous approach lacks flexibility and does not synchronously guarantee the integration of several subjects in real time, especially during unpredictable disaster conditions. The proposed FL-MAPPO model surpasses current methods by facilitating decentralized, privacy-protecting decision-making minimizing latency and single-point failures. In contrast to LSTM, Bi-LSTM, and DRNN, which are based on centralized data processing, FL-MAPPO provides real-time adaptability and effective resource management. Experimental results validate that it has lower MSE, higher R² scores, and quicker response times, making it better suited for flood prediction and disaster response. To this end, this study advances a solution through a Decentralized Learning-Driven Multi-Agent Autonomous System (DL-MAAS). The new feature is a Decentralized Cooperation environment in which intelligent and self-managing agents learn utilizing Reinforcement Learning (RL) and Federated Learning (FL) algorithms for enhancing smart water management and real-time disaster relief. IoT devices are adopted for sensing and data acquisition, adaptive learning for decision-making, and optimization of energy use among the agents in the system through metaheuristic algorithms. The research methodology for implementing the proposed solution involves the design of a multi-layered architecture, including data acquisition, decentralized learning, and real-time execution. With a Mean Squared Error (MSE) of 0.112, R-squared (R²) of 0.953, and Mean Absolute Error (MAE) of 0.207, the proposed method is better than existing approaches for big, real-time flood predictive systems. Data show that decentralized systems provide orders of magnitude higher efficiency in water distribution, time of response to disasters, and energy usage compared to conventional centralized systems. These results indicate the significant opportunity for decentralized multi-agent systems in the sustainability of disaster management and water resources.

Keywords

Decentralized multi-agent systemDisaster response optimizationFederated learningReinforcement learningSmart water management

Publication Link

https://doi.org/10.1016/j.aej.2025.04.033

Block_researches_list_suggestions

Suggestions to read

Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
Unspoken scars: A systemic functional linguistic analysis of war trauma and its ideological representations in The Yellow Birds by Kevin Powers.
HISSAH MOHAMMED SHAWHAN ALRUWAILI
تواصل معنا