تجاوز إلى المحتوى الرئيسي

Multi antenna structure assisted by metasurface concept providing circular polarization for 5G millimeter wave applications

Author name : Nasr Mahmoud Mohamed Rashid
Publication Date : 2025-05-21
Journal Name : Scientific Reports

Abstract

This This paper presents a circularly polarized multi-antenna structure designed for 5G millimeter-wave applications. The structure is based on circular patch radiators, each enhanced with metasurface (MTS) characteristics through the integration of multi-split ring slots. Each radiating element is enclosed within a decoupling wall constructed from a microstrip transmission line, which features both wide (capacitive) and thin (inductive) impedance profiles. The antennas are excited from below using metallic pins, which connect to the radiators through via-holes stemming from coplanar waveguide ports on the ground plane. Experimental results demonstrate a wide bandwidth from 25.6 to 29.7 GHz, corresponding to a fractional bandwidth of 14.82%. Additionally, the antenna exhibits stable radiation patterns, with an average gain of 2.7 dBi and a radiation efficiency of 57%. Using a single radiator configuration, a 3 × 3 antenna array was implemented. In this design, electromagnetic coupling between adjacent radiators is significantly reduced. The resulting array, measuring 20 × 20 × 0.32 mm3, achieves excellent performance across a wide frequency range from 24 to 31 GHz, corresponding to a bandwidth of 25.45%. Key metrics include an average isolation between radiating elements exceeding 17 dB and an average gain and radiation efficiency of 9.0 dBi and 91.5%, respectively.

Keywords

Multi-antenna structure, Circularly polarized (CP), Metasurface (MTS), 5G millimeter-waves (mm-waves)

Publication Link

https://doi.org/10.1038/s41598-025-02208-3

Block_researches_list_suggestions

Suggestions to read

Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
CID-RPL: Clone ID Attack detection using Deep Neural Network for RPL-based IoT Networks
THANAA SALEM AHMED ALNUSAIRI
تواصل معنا