Enhancing Agricultural Yield Forecasting with Deep Convolutional Generative Adversarial Networks and Satellite Data.
Abstract
Ensuring food security amidst growing global population and environmental changes is imperative. This research introduces a pioneering approach that integrates cutting-edge deep learning techniques. Deep Convolutional Generative Adversarial Networks (DCGANs) and Convolutional Neural Networks (CNNs) with high-resolution satellite imagery to optimize agricultural yield prediction. The model leverages DCGANs to generate synthetic satellite images resembling real agricultural settings, enriching the dataset for training a CNN-based yield estimation model alongside actual satellite data. DCGANs facilitate data augmentation, enhancing the model's generalization across diverse environmental and seasonal scenarios. Extensive experiments with multi-temporal and multispectral satellite image datasets validate the proposed method's effectiveness. Trained CNN adeptly discerns intricate patterns related to