تجاوز إلى المحتوى الرئيسي
 

 

 

Early detection of sepsis using machine learning algorithms

Author name : RASHA MAHMOUD ABDELAZIZ HASSANIEN
Publication Date : 2024-10-19
Journal Name : Alexandria Engineering Journal

Abstract

In the intensive care unit (ICU), bedside surveillance data can appropriately predict the onset of sepsis, probably saving lives and lowering costs by permitting early intervention. Sepsis triggers a complicated immune reaction to pathogenic microbes, which frequently leads to septic shock and organ failure. Early detection is essential, but the excessive-pressure environment of emergency rooms can stress clinical personnel. Suggest a machine learning-based support vector machine (ML-SVM) technique to address this. The goal is to offer a reliable prediction of sepsis onset by studying ICU monitoring records to uncover subtle developments and early warning signs. This technology-driven approach complements their clinical judgment by aiding healthcare experts in making timely, knowledgeable selections. The ML-SVM machine automates the prediction of sepsis onset with a sensitivity of 91 % and a specificity of 93 %, supplying an accuracy of 95.2 %. This excessive- Overall Performance version offers improvements over present-day techniques, assisting scientific employees in making informed choices faster and decreasing the chance of sepsis-related problems. By improving early detection and optimizing resource allocation, the ML-SVM technique can significantly reduce affected person effects, keep lives, lessen healthcare prices, and alleviate the workload on healthcare experts in crucial care settings.

Keywords

SepsisMachine learningSupport vector machineIntensive care unit

Publication Link

https://doi.org/10.1016/j.aej.2024.10.005

Block_researches_list_suggestions

Suggestions to read

“Synthesis and Characterization study of SnO2/α-Fe2O3, In2O3/α-Fe2O3 and ZnO/α-Fe2O3 thin films and its application as transparent conducting electrode in silicon heterojunction solar cell”
Asma Arfaoui
Oral cancer stem cells: A comprehensive review of key drivers of treatment resistance and tumor recurrence
DR KALADHAR REDDY AILENI
Modeling the Social Factors Affecting Students Satisfaction with Online Learning: A Structural Equation Modeling Approach
ABDULHAMEED RAKAN ALENEZI
Higher Knee Muscles Co-Contractions are Observed in Individuals Exhibiting Loading Asymmetry Early after ACL Reconstruction. The Combined Sections Meeting
ABDULMAJEED BARAKAT MUBARAK ALFAYYADH
تواصل معنا