تجاوز إلى المحتوى الرئيسي

Seismic resilience of geogrid reinforced concrete earth-retaining wall of various incremental panels based on physical and numerical modelling

Author name : Aboelnaga yosri mahmoud ahmed
Publication Date : 2025-03-13
Journal Name : Structures

Abstract

The dynamic response for different earth-retaining walls having geogrid as a reinforcement, combined with cohesionless granular material for backfill to mitigate earth pressure, has been examined through scale-down shaking table experiments and full-scale 3D FE analysis, utilizing ABAQUS as the finite element software. The scale factor is 1/4th for scaled-down. This study included various physical modelling experiments using different geogrid-reinforced earth retaining (GRER) walls (1 m height, 7.5 cm, thickness, and length 1 m). Additionally, comprehensive 3D finite element analysis were conducted with the configurations measuring (4 m, height 0.3 m, thickness, and length 4 m). This study examines hollow prefabricated concrete panels with shear key (PC-W), stone masonry walls of gravity type (GM-W), and traditional reinforced concrete (RC-W) walls. It also presents comparative investigations, such as lateral horizontal displacement of the wall, lateral pressure to the backfill, backfill soil settlement, and settlement of the wall foundation of various (GRER) walls. The accuracy of the Finite Element simulation framework has also been assessed in the shaking table experiment, as well as the FE analyses. According to the results, a PC-W wall with a shear key is the most effective type because it shows more resistance toward displacement. As per the comparison of the test models, GRER walls’ seismic response was more affected by the earthquake waves from the far field having long-term high acceleration values. In contrast, seismic waves from the close field had a smaller impact on the walls’ seismic response. However, the geogrid could improve the GRER seismic resilience deformation. Geogrid layers may reduce backfill pressures and backfill settlements. The geogrids located in the central portion within the reinforced soil and the geogrid roots connected to the walls were essential to the seismic design of the geogrid-reinforced earth retaining wall. To evaluate the reliability of the findings, the models have a predicted R2 variance below 0.1, indicating a consistent relationship between these two variables.

Keywords

Seismic; resilience; geogrid reinforced concrete; earth-retaining wall

Publication Link

https://doi.org/10.1016/j.istruc.2024.107901

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
تواصل معنا