تجاوز إلى المحتوى الرئيسي

Adaptive Deep Learning Model to Enhance Smart Greenhouse Agriculture

Author name : MEDHAT AHMED TAWFIK ABDELHADY ELAARG
Publication Date : 2023-11-29
Journal Name : Computers, Materials & Continua

Abstract

The trend towards smart greenhouses stems from various factors, including a lack of agricultural land area owing to population concentration and housing construction on agricultural land, as well as water shortages. This study proposes building a full farming adaptation model that depends on current sensor readings and available datasets from different agricultural research centers. The proposed model uses a one-dimensional convolutional neural network (CNN) deep learning model to control the growth of strategic crops, including cucumber, pepper, tomato, and bean. The proposed model uses the Internet of Things (IoT) to collect data on agricultural operations and then uses this data to control and monitor these operations in real time. This helps to ensure that crops are getting the right amount of fertilizer, water, light, and temperature, which can lead to improved yields and a reduced risk of crop failure. Our dataset is based on data collected from expert farmers, the photovoltaic construction process, agricultural engineers, and research centers. The experimental results showed that the precision, recall, F1-measures, and accuracy of the one-dimensional CNN for the tested dataset were approximately 97.3%, 98.2%, 97.25%, and 97.56%, respectively. The new smart greenhouse automation system was also evaluated on four crops with a high turnover rate. The system has been found to be highly effective in terms of crop productivity, temperature management and water conservation.

Keywords

Greenhouse; wireless sensor network; deep learning; Internet of Things; strategic crops monitoring; smart irrigation

Publication Link

https://doi.org/10.32604/cmc.2023.042179

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
تواصل معنا