تجاوز إلى المحتوى الرئيسي

Locally resonant porous phononic crystal sensor for heavy metals detection: A new approach of highly sensitive liquid sensors

Author name : mohamed sulman saifalnasser karram
Publication Date : 2023-01-05
Journal Name : Journal of Molecular Liquids

Abstract

In this research, a novel and highly sensitive phononic crystal (PnC) sensor is presented for the detection of CdBr2 concentrations at a low scale (ppm) which is considered a highly toxic heavy metal ion in fresh-water. The proposed sensor is composed of two thin layers of rubber covering both the top and bottom surfaces of a one-dimensional ternary porous silicon (PSi) PnC. As a result, the whole designed structure is arranged as {rubber/[PSi1/PSi2/PSi3]N/rubber}. The appearance of local resonant modes is due to the pres-ence of two thin rubber layers as a cap layer of the PnC design. In particular, the spectral position of the modes is significantly tuned when filling the PSi layers with CdBr2 ions. It is worth mentioning that the novelty of this work is mainly focused on three axes. The first one is the use of locally resonant PnCs (not conventional defective ones) as highly sensitive biosensors. The second one, the liquid of interest here is considered a dangerous aqueous solution with a very low scale (ppm). The last promising point, we pro-posed the pores inside Si layers are filled with a liquid material in contrast to most of the micromechanics methods of composite materials that supposed the pores are empty (just voids are inside). To realize the best performance of this sensor, an optimization strategy of some related parameters such as the rubber layer thickness, the geometry of the PnC, and the unit cell number was conducted. In this regard, the pro-posed sensor provides promising values of sensitivity, quality factor, detection limit, and damping rate of 47.25 Hz/ppm, 2756.2, 82 ppm, and 0.00018, respectively. Therefore, the present design could be of seri-ous contribution to liquid sensors and bio-sensing applications due to its simplicity, novelty, and high performance.

Keywords

Porous silicon Local resonance Phononic crystals Heavy metals Liquid sensors Acoustic wave

Publication Link

https://doi.org/10.1016/j.molliq.2022.120964

Block_researches_list_suggestions

Suggestions to read

HIDS-IoMT: A Deep Learning-Based Intelligent Intrusion Detection System for the Internet of Medical Things
Ahlem . Harchy Ep Berguiga
Generalized first approximation Matsumoto metric
AMR SOLIMAN MAHMOUD HASSAN
Structure–Performance Relationship of Novel Azo-Salicylaldehyde Disperse Dyes: Dyeing Optimization and Theoretical Insights
EBTSAM KHALEFAH H ALENEZY
“Synthesis and Characterization of SnO₂/α-Fe₂O₃, In₂O₃/α-Fe₂O₃, and ZnO/α-Fe₂O₃ Thin Films: Photocatalytic and Antibacterial Applications”
Asma Arfaoui
تواصل معنا